On MatBase’s algorithm for preventing cycles in binary Cartesian function products

نویسندگان

چکیده

This paper introduces the algorithm that MatBase (an intelligent knowledge and database management system prototype) uses for enforcing acyclicities of binary Cartesian function products, characterizes it -proving is complete, sound, optimal, linear- and, besides its pseudocode embedding SQL, also provides an example implementation in standard ANSI-99 SQL MS VBA.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominating Cartesian Products of Cycles

Let y(G) be the domination number of a graph G and let G U H denote the Cartesian product of graphs G and H. We prove that y(X) = (nr= ,nr)/(2m + l), where X = C1 0 CZ 0 ... 0 C, and all nt = ICkIr 1 < k < m, are multiples of 2m + 1. The methods we use to prove this result immediately lead to an algorithm for finding minimum dominating sets of the considered graphs. Furthermore the domination n...

متن کامل

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Perfect Dominating Sets in the Cartesian Products of Prime Cycles

We study the structure of a minimum dominating set of Cn 2n+1, the Cartesian product of n copies of the cycle of size 2n + 1, where 2n + 1 is a prime.

متن کامل

Optimal L(d, 1)-labelings of certain direct products of cycles and Cartesian products of cycles

An L(d,1)-labeling of a graph G is an assignment of nonnegative integers to the vertices such that adjacent vertices receive labels that differ by at least d and those at a distance of two receive labels that differ by at least one, where d 1. Let d1 (G) denote the least such that G admits an L(d,1)-labeling using labels from {0, 1, . . . , }. We prove that (i) if d 1, k 2 and m0, . . . , mk−1 ...

متن کامل

Generalized Shifts on Cartesian Products

It is proved that if E, F are infinite dimensional strictly convex Banach spaces totally incomparable in a restricted sense, then the Cartesian product E × F with the sum or sup norm does not admit a forward shift. As a corollary it is deduced that there are no backward or forward shifts on the Cartesian product `p1 × `p2 , 1 < p1 6= p2 < ∞, with the supremum norm thus settling a problem left o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: World Journal of Advanced Engineering Technology and Sciences

سال: 2022

ISSN: ['2582-8266']

DOI: https://doi.org/10.30574/wjaets.2022.7.1.0092